

Standard Specification for Alloy Steel Forgings for Pressure and High-Temperature Parts¹

This standard is issued under the fixed designation A 336/A 336M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope*

1.1 This specification² covers ferritic steel forgings for boilers, pressure vessels, high-temperature parts, and associated equipment.

1.2 forgings made of steel grades listed in Specification A 335/A 335M, may also be ordered under this specification. The chemical, tensile, heat treatment, and marking requirements of Specification A 335/A 335M shall apply, except the forging shall conform to the chemical requirements of Tables 1 and 2 of Specification A 335/A 335M only with respect to heat analysis. On check analysis they may deviate from these limits to the extent permitted in Table 1 of this specification.

Current	Formerly
Grade F1	Class F1
Grade F11, Class 2	Class F11
Grade F11, Class 3	Class F11A
Grade F11, Class 1	Class F11B
Grade F12	Class F12
Grade F5	Class F5
Grade F5A	Class F5A
Grade F9	Class F9
Grade F6	Class F6
Grade F21 Class 1	Class F21A
Grade F21, Class 3	Class F21
Grade F22, Class 1	Class F22A
Grade F22, Class 3	Class F22
Grade F91	Class F91
Grade F3V	Class F3V
Grade F22V	Class F22V

1.3 Supplementary Requirements S1 to S9 are provided for use when additional testing or inspection is desired. These shall apply only when specified individually by the purchaser in the order.

1.4 Unless the order specifies the applicable "M" specification designation, the material shall be furnished to the inch-pound units.

¹ This specification is under the jurisdiction of ASTM Committee A01 on Steel, Stainless Steel, and Related Alloys and is the direct responsibility of Subcommittee A01.06 on Steel Forgings and Billets.

Current edition approved Sept. 10, 2003. Published October 2003. Originally approved in 1955. Last previous edition approved in 2003 as A 336/A 336M – 03.

² For ASME Boiler and Pressure Vessel Code applications, see related Specification SA-336/SA-336M in Section II of that Code.

1.5 A 336/A 336M formerly included austenitic steel forgings, which are now found in A 965/A 965M.

1.6 The values stated in either inch-pound units or SI (metric) units are to be regarded separately as standards. Within the text and tables, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independent of the other. Combining values from the two systems may result in nonconformance with the specification.

2. Referenced Documents

³

2.1 ASTM Standards:

- A 275/A 275M Test Method for Magnetic Particle Examination of Steel Forgings
A 335/A 335M Specification for Seamless Ferritic Alloy Steel Pipe for High-Temperature Service
A 370 Test Methods and Definitions for Mechanical Testing of Steel Products
A 788 Specification for Steel Forgings, General Requirements
A 965 Specification for Steel Forgings, Austenitic, for Pressure and High Temperature Parts
E 165 Test Method for Liquid Penetrant Examination

2.2 Other Standard:

- ASME Boiler and Pressure Vessel Code, Section IX, Welding Qualifications⁴

3. Ordering Information and General Requirements

3.1 In addition to the ordering information required by Specification A 788, the purchaser should include with the inquiry and order the following information:

3.1.1 A drawing or sketch that shows test locations when the testing is in accordance with 8.1.1.3.

³ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

⁴ Available from the American Society of Mechanical Engineers, 345 East 47th St., New York, NY 10017.

TABLE 1 Tensile Requirements

	F1	F11, Class 2	F11, Class 3	F11, Class 1	F12	F5	F5A	F9	F6	Grade			
										F21, Class 3	F21, Class 1	F22, Class 1	F22, Class 3
Tensile strength, psi [MPa]	70 000- 95 000	70 000- 95 000	75 000- 100 000	60 000- 85 000	70 000- 95 000	60 000- 85 000	80 000- 105 000	85 000- 110 000	85 000- 100 000	75 000- 100 000	60 000- 85 000	90 000- 110 000	85 000- 110 000
Yield strength, min, psi [MPa]	40 000- 660	40 000- 660	51 5- 690	41 5- 650	41 5- 650	41 5- 650	585- 725	585- 760	585- 760	515- 690	415- 680	585- 760	585- 760
Elongation in 2 in. or 50 mm, min, %	40 000 [275]	40 000 [275]	45 000 [310]	30 000 [205]	40 000 [205]	40 000 [205]	50 000 [250]	50 000 [250]	55 000 [345]	55 000 [380]	45 000 [205]	30 000 [205]	60 000 [415]
Reduction of area, min, %	40	40	45	40	40	35	40	35	40	45	40	40	45

3.1.2 The intended use of forgings if 5.1 is applicable.

3.2 Material supplied to this specification shall conform to the requirements of Specification A 788, which outlines additional ordering information, manufacturing requirements, testing and retesting methods and procedures, marking, certification, product analysis variations, and additional supplementary requirements.

3.3 If the requirements of this specification are in conflict with the requirements of Specification A 788, the requirements of this specification shall prevail.

3.4 For hubbed flanges and tube sheets ordered for ASME Boiler and Pressure Vessel Code application, Supplementary Requirement S12 of Specification A 788 shall be specified.

4. Melting and Forging

4.1 In addition to the melting and forging requirements of Specification A 788 which may be supplemented by Supplementary Requirement S8, the following conditions apply:

4.1.1 A sufficient discard shall be made to secure freedom from injurious pipe and undue segregation.

5. Machining

5.1 Forged pressure vessels for steam power service shall have the inner surface machined or ground. Unfired pressure vessels shall have the inner surfaces sufficiently free of scale to permit inspection.

5.2 When rough machining is performed, it may be done either before or after heat treatment.

6. Heat Treatment

6.1 The steel forgings shall be annealed or normalized and tempered but alternatively may be liquid quenched and tempered when mutually agreed upon between the manufacturer and the purchaser. Grade F22V forgings shall be normalized and tempered or liquid quenched and tempered. For Grade F22V forgings the minimum austenizing temperature shall be 1650°F [900°C]. For Grade F91 and F911 forgings the austenizing temperature shall be in the range of 1900 to 2000°F [1040 to 1095°C]. Normalizing or liquid quenching shall be followed by tempering at a subcritical temperature. The minimum tempering temperature shall be 1100°F [595°C], except for the following grades:

Grade	Minimum Tempering Temperature, °F [°C]
F6	1150 [620]
F11, Class 2	1150 [620]
F11, Class 3	1150 [620]
F11, Class 1	1150 [620]
F5	1250 [675]
F9	1250 [675]
F21, Class 1	1250 [675]
F3V, F3VCb	1250 [675]
F22, Class 1	1250 [675]
F22V	1250 [675]
F91	1350 [730]
F911	1350 [730]

7. Chemical Composition

7.1 *Heat Analysis*—The heat analysis obtained from sampling in accordance with Specification A 788 and shall comply with Table 2.

7.2 *Product Analysis*—The manufacturer shall use the product analysis provision of Specification A 788 to obtain a product analysis from a forging representing each heat or multiple heat. The product analysis for columbium and calcium for Grade F22V shall conform to the requirements of Table 2 of this specification. Boron is not subject to product analysis. The purchaser may also make this determination in accordance with Specification A 788.

8. Mechanical Properties

8.1 *General Requirements*—The material shall conform to the requirements for mechanical properties prescribed in Table 1. The largest obtainable tension test specimen as specified in Test Methods and Definitions A 370 shall be used.

8.1.1 For annealed, normalized, and tempered steels not tested per 8.1.1.3, the longitudinal axis of the specimens shall be parallel to the direction of major working of the forging, except when Supplementary Requirement S2 is specified. For upset disk forgings, the longitudinal axis of the test specimen shall be in the tangential direction.

8.1.1.1 The longitudinal axis of the specimen shall be located midway between the parallel surfaces of the test extension if added to the periphery of disks or midway between the center and surface of solid forgings. For hollow forgings, the longitudinal axis of the specimens shall be located midway between the center and outer surfaces of the wall. When separately forged test blocks are employed, as defined in 8.1.3, the tension test specimens shall be taken from a location which represents the midwall of the heaviest section of the production forgings. When specimens are required from opposite ends, they shall be taken from the diagonal corners of an axial plane. Alternatively, and when specified, the specimens shall be taken in accordance with Supplementary Requirement S3.

8.1.1.2 For liquid quenched and tempered forgings, the test specimens shall have their longitudinal axis at least $\frac{1}{4} T$ of the maximum heat-treated thickness from any surface and with the mid-length of the specimens at least one T from any second surface. This is normally referred to as $\frac{1}{4} T \times T$, where T is the maximum heat-treated thickness. A thermal buffer may be used to adhere to the above condition.

8.1.1.3 For normalized and tempered and liquid quenched and forgings. With prior purchaser approval, test specimens may be taken at a depth (t) corresponding to the distance from the area of significant stress to the nearest heat-treated surface and at least twice this distance ($2t$) from any second surface. However, the test depth shall not be nearer to one heat-treated surface than $\frac{3}{4}$ in. [19 mm] and to the second treated surface than $1\frac{1}{2}$ in. [38 mm]. This method of test specimen location normally applies to thick and complex pressure vessel components where the testing in 8.1.1.2 is not practical. Sketches showing the exact test locations shall be approved by the purchaser when this method is used.

8.1.2 Except as specified herein, tests for acceptance shall be made after heat treatment has been completed in accordance with Section 6. When the ends of the cylindrical forgings are closed in by reforging, the cylindrical forgings may be normalized and tempered or annealed and tested before reforging. After reforging, the entire forging shall be reheat-treated in the

TABLE 2 Chemical Requirements

Element	Composition, %							
	F1	F11, Classes 2 and 3	F11, Class 1	F12	F5 ^A	F5A ^A	F9	F6
Carbon	0.20–0.30	0.10–0.20	0.05–0.15	0.10–0.20	0.15 max	0.25 max	0.15 max	0.12 max
Manganese	0.60–0.80	0.30–0.80	0.30–0.60	0.30–0.80	0.30–0.60	0.60 max	0.30–0.60	1.00 max
Phosphorus, max	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025
Sulfur, max	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025
Silicon	0.20–0.35	0.50–1.00	0.50–1.00	0.10–0.60	0.50 max	0.50 max	0.50–1.00	1.00 max
Nickel	0.50 max	0.50 max	...	0.50 max
Chromium	...	1.00–1.50	1.00–1.50	0.80–1.10	4.0–6.0	4.0–6.0	8.0–10.0	11.5–13.5
Molybdenum	0.40–0.60	0.45–0.65	0.44–0.65	0.45–0.65	0.45–0.65	0.45–0.65	0.90–1.10	...
Grade								
Element	F21, Classes 1 and 3	F22, Classes 1 and 3						
Carbon	0.05–0.15	0.05–0.15						
Manganese	0.30–0.60	0.30–0.60						
Phosphorus, max†	0.025	0.025						
Sulfur, max†	0.025	0.025						
Silicon†	0.50 max	0.50 max						
Nickel†						
Chromium	2.7–3.3	2.00–2.50						
Molybdenum	0.80–1.06	0.90–1.10						
Vanadium						
Copper						
Nitrogen						
Columbium						
Element	Grade F 91	Grade F911	F3V	F3VCb	F22V			
Carbon	0.08–0.12	0.09–0.13	0.10–0.15	0.10–0.15	0.11–0.15			
Manganese	0.30–0.60	0.30–0.60	0.30–0.60	0.30–0.60	0.30–0.60			
Phosphorus, max	0.025	0.020	0.020	0.020	0.015			
Sulfur, max	0.025	0.010	0.020	0.010	0.010			
Silicon	0.20–0.50	0.10–0.50	0.10 max	0.10 max	0.10 max			
Nickel	0.40 max	0.40 max	...	0.25 max	0.25 max			
Chromium	8.0–9.5	8.5–10.5	2.7–3.3	2.7–3.3	2.00–2.50			
Molybdenum	0.85–1.05	0.90–1.10	0.90–1.10	0.90–1.10	0.90–1.10			
Vanadium	0.18–0.25	0.18–0.25	0.20–0.30	0.20–0.30	0.25–0.35			
Columbium	0.06–0.10	0.06–0.10	...	0.015–0.070	0.07 max			
Nitrogen	0.03–0.07	0.04–0.09			
Aluminum	0.04 max	0.04 max			
Boron	...	0.0003–0.006	0.001–0.003	...	0.0020 max			
Tungsten	...	0.90–1.10			
Titanium	0.015–0.035	0.015 max	0.030 max			
Copper	0.25 max	0.20 max			
Calcium	0.0005–0.0150	0.015 max ^B			

^A The present Grade F 5A (0.25 %, maximum carbon) previous to 1955 was assigned the identification symbol F 5. Identification symbol F 5 has been assigned to the 0.15 %, maximum, carbon grade to be consistent with ASTM specifications for other products such as pipe, tubing, bolting, welding, fittings, etc.

^B For Grade F 22V, rare earth metals (REM may be added in place of calcium subject to agreement between the producer and the purchaser. In that case the total amount of REM shall be determined and reported.

† Editorially corrected.

same manner and at the same temperature range as employed when the forging was heat-treated before certification testing.

8.1.3 When mutually agreed upon between the manufacturer and the purchaser, test specimens may be machined from a specially forged block suitably worked and heat treated with the production forgings. Such a special block shall be obtained from an ingot, slab, or billet from the same heat used to make the forgings it represents. This block shall receive essentially the same type of hot-working and forging reduction as the production forgings; however, a longitudinally forged bar with dimensions not less than T by T by $3T$ may be used to represent a ring forging. The dimension T shall be representa-

tive of the heaviest effective cross section of the forging. For quenched and tempered forgings for which tests are required at both ends by 8.2.2.3 and 8.2.2.4, separately forged test blocks are not allowed.

NOTE 1—In using separately forged test blocks attention is drawn to the effect of mass differences between the production forgings and the test blocks. This can be particularly significant when forgings are normalized and tempered or quenched and tempered.

8.2 *Number and Location of Tests*—The number and location of tests are based on forging length, weight, and heat treatment and shall be as prescribed below. The length and

weight to be used for this purpose shall be the shipped length and weight of forgings produced individually or the aggregate shipped length and weight of all pieces cut from a multiple forging.

8.2.1 Annealed or Normalized and Tempered Forgings:

8.2.1.1 For forgings weighing 5000 lb [2250 kg] or less at the time of heat treatment, one tension test shall be taken from one forging per heat, per heat treatment charge. When heat treatment is performed in continuous type furnaces with suitable temperature controls and equipped with recording pyrometers so that complete heat treatment records are available, a tempering charge may be considered as any continuous run not exceeding an 8 h period.

8.2.1.2 For forgings and forged bars weighing over 5000 lb [2250 kg] at the time of heat treatment, one tension test shall be taken from each forging.

8.2.2 Quenched and Tempered Forgings:

8.2.2.1 For quenched and tempered forgings weighing 5000 lb [2250 kg] or less at the time of heat treatment, but not exceeding 12 ft [3.7 m] in length, one tension test shall be taken from one forging per heat, per heat treatment charge. When heat treatment is performed in continuous type furnaces with suitable temperature controls and equipped with recording pyrometers so that complete heat treatment records are available, a tempering charge may be considered as any continuous run not exceeding an 8 h period.

8.2.2.2 For quenched and tempered forgings and forged bars weighing over 5000 to 10 000 lb [2250 to 4500 kg] at the time of heat treatment, but not exceeding 12 ft [3.7 m] in length, one tension test shall be taken from each forging.

8.2.2.3 Quenched and tempered forgings that exceed 12 ft [3.7 m] in length shall be tension tested at both ends of the forging under test.

8.2.2.4 For quenched and tempered forgings and forged bars weighing more than 10 000 lb [4500 kg] at the time of heat treatment, two tension test specimens shall be taken from each forging. These shall be offset 180° from each other except that if the length of the forging, excluding test prolongations, exceeds 12 ft [3.7 m], then one specimen shall be taken from each end of the forging.

8.3 Notch Toughness Requirements—Grades F3V, F3VCb, and F22V:

8.3.1 Impact test specimens shall be charpy V-notch Type A, as shown in Fig. 11 of Test Methods and Definitions A 370.

The usage of subsize specimens due to material limitations must have prior purchaser approval.

8.3.2 The charpy V-notch test specimens shall be obtained as required for tension tests in 8.1 and 8.2. One set of three charpy V-notch specimens shall be taken from each tensile specimen location.

8.3.3 The longitudinal axis and mid-length of impact specimen shall be located similarly to the longitudinal axis of the tension test specimens. The axis of the notch shall be normal to the nearest heat treated surface of the forging.

8.3.4 The charpy V-notch tests shall meet a minimum energy absorption value of 40 ft-lbf [54 J] average of three specimens. One specimen only in one set may be below 40 ft-lbf [54 J] and it shall meet a minimum value of 35 ft-lbf [48 J].

8.3.5 The impact test temperature shall be 0°F [−18°C].

9. Workmanship, Finish, and Appearance

9.1 When forgings have been heat treated by quenching and tempering, all accessible surfaces shall subsequently be examined for quench cracks by the magnetic particle method in accordance with Test Method A 275/A 275M.

10. Repair Welding

10.1 Repair welding of forgings may be permitted but only at the option of the purchaser. Such repair welds shall be made in accordance with Section IX of the ASME Boiler & Pressure Vessel Code.

11. Marking

11.1 In addition to the marking requirements of Specification A 788, the specification marking shall be followed by the letter A for annealed, N for normalized and tempered or Q for liquid quenched and tempered as applicable.

12. Test Reports

12.1 The certification requirements of Specification A 788 shall apply.

13. Keywords

13.1 chromium alloy steel; chromium-molybdenum steel; pressure containing parts; pressure vessel service; steel forgings—alloy; temperature service applications—high

SUPPLEMENTARY REQUIREMENTS

One or more of the following supplementary requirements shall apply only when specified by the purchaser in the inquiry, contract, and order. Details of these supplementary requirements shall be agreed upon between the manufacturer and the purchaser.

S1. Rough Turning and Boring

S1.1 The position of the rough turning and boring in the sequence of manufacturing operations shall be specified

S2. Transverse Tension Test

S2.1 Instead of test specimens taken in accordance with 8.1.1, the longitudinal axis of the test specimens shall be transverse to the direction of major working of the forging. The results shall conform with requirements of Table 1, with the exception of the ductility limits which shall be as prescribed in Table S2.1.

S3. Alternative Test Specimen Requirements

S3.1 The test requirements for materials of the ASME Boiler and Pressure Code, Section III, Article NB-2223.3, shall be used in place of that specified in 8.1.1.1.

S4. Hydrostatic Test

S4.1 A hydrostatic pressure test shall be applied. The details of the test, including its position in the sequence of manufacturing operations, shall be specified.

S6. Liquid Penetrant Examination

S6.1 After forgings have been heat treated by quenching and tempering, all accessible surfaces shall be inspected for quench cracks by the liquid penetrant method in accordance with Test Method E 165 as an alternative to magnetic particle examination.

S7. Marking

S7.1 forgings shall be marked at a location indicated by the purchaser in the purchase order or drawing.

S8. Forging Requirements

S8.1 Large drum forgings shall be made from solid cast ingots, punched, bored, or trepanned, or from hollow ingots cast in metal molds. The walls of the hollowed or hollow ingots shall be reduced in thickness at least one-half by forging on mandrels.

S8.2 Drum forgings with one solid closed end may be hollow forged in closed dies or on a draw bench provided the metal is worked thoroughly.

S8.3 Drum forgings, either with open ends or one solid closed end, may also be produced by hot extrusion provided the metal is worked thoroughly.

S8.4 Small drum forgings may be made as solid forgings, subsequently bored, provided the purchaser agrees to this method of forging. The cross-sectional area of the solid forgings shall have a reduction by forging from that of the ingot in the ratio of not less than 3:1.

S8.5 Small sections or component parts of pressure vessels, which are to be subsequently assembled to form drums, may be made by expanding on a mandrel under a press or hammer, by hot extrusion or by ring rolling methods, provided the wall thickness is reduced at least one-half in the process.

S8.6 Heads or covers shall be forged as disks, upset from blocks cut from ingots or billets. The length of block before upsetting shall be at least twice the thickness of the as-forged head or cover.

S9. Individual Forging

S9.1 forgings, whether identical or not identical, shall be produced individually. They shall not be forged in multiple and separated prior to or after heat treatment.

S9.2 The shape and size of individual forgings shall be agreed between the manufacturer and the purchaser by means of a forging drawing or the purchase order.

TABLE S2.1 Ductility Limits

Elongation in 2 in. or 50 mm, min, %	Reduction of area, min, %	Grade																
		F1 20	F11, Class 2 18	F11, Class 3 18	F11, Class 2 19	F12 18	F5 19	F5A 19	F9 18	F6 18	F21, Class 3 18	F21, Class 1 19	F22, Class 3 18	F22, Class 1 20	F3V 17	F46 40	F22V 17	F91 17
30	35	30	30	40	25	35	35	35	35	35	35	35	35	35	35	35	40	30

SUMMARY OF CHANGES

Committee A01 has identified the location of the following changes to this standard since A 336/A 336M-03 that may impact the use of this standard.

- (1) Changed advisory language to mandatory language in paragraph 3.4 of Ordering Information.

Committee A01 has identified the location of the following changes to this standard since A 336/A 336M-99 that may impact the use of this standard.

- (1) Added supplementary requirement reference to Ordering Information.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).